

H3T6phos Recombinant Nuclesosome, Biotinylated

Catalog No	16-0405	Species	Human
Lot No	24128001-02	Source	E. coli & synthetic DNA
Pack Size	50 µg	Tag	Biotinylated
Concentration	5.5 µM	MW	199,806 Da
DESCRIPTION			

Histone phosphorylation is a post-translational modification (PTM) wherein a phosphate group is added to a histone protein, predominantly occurring on serine, threonine, and tyrosine residues. In combination with other PTMs, histone phosphorylation constitutes the "histone code," acting as a language read by proteins to regulate chromatin structure and gene expression. Histone phosphorylation is involved in chromatin remodeling and compaction associated with diverse cellular processes, including DNA damage repair, transcription regulation, cell division, and apoptosis [1]. Recombinant mononucleosomes containing phosphorylated histones can be used to study the biological functions of histone phosphorylation.

H3T6phos (histone H3 threonine 6 phosphorylation) Recombinant Nucleosome, Biotinylated consists of 147 base pairs of DNA wrapped around an octamer of core histone proteins (two each of H2A, H2B, H3.2, and H4) to form a nucleosome, the basic repeating unit of chromatin. The 147 bp 601 sequence, identified by Lowary and Widom [2], has high affinity for histone octamers and is useful for nucleosome assembly. The DNA contains a 5' biotin-TEG group. H3T6phos nucleosome contains phosphorylated threonine at position 6 on histone H3.2 and a Cys to Ala substitution at position 110. H3T6phos is associated with transcription regulation via H3 methylation, preventing LSD1 demethylation of H3K4 during androgen receptor-dependent gene activation [1].

TECHNICAL INFORMATION

StorageStable for six months at -80°C from date of receipt. For best results, aliquot and avoid freeze/thaws.Formulation1.1 mg/mL mononucleosome in 45.5 μL 10 mM Tris HCl pH 7.5, 25 mM NaCl, 1 mM EDTA, 2 mM
DTT, 20% glycerol (27.2 μg protein, 50 μg DNA + protein).

APPLICATION NOTES

H3T6phos mononucleosome is highly purified and suitable for a variety of applications, including use as a substrate in enzyme assays, high-throughput screening and inhibitor testing, chromatin binding studies, protein-protein interaction assays, structural studies, and in effector protein binding experiments. For a corresponding unmodified control, we recommend EpiCypher 16-0006.

GENE & PROTEIN INFORMATION

H2A - P04908 (alt. names: H2A type 1-B/E, H2A.2, H2A/a, H2A/m)
H2B - O60814 (alt. names: H2B K, HIRA-interacting protein 1)
H3.2 - Q71DI3
H4 - P62805

REFERENCES

[1] Rossetto et al. Epigenetics (2012). PMID: 22948226

[2] Lowary & Widom J. Mol. Biol. (1998). PMID: 9514715

VALIDATION DATA

FIGURE 1 Western blot data. Western Analysis of H3T6phos nucleosome. Top Panel: Unmodified (EpiCypher 16-0006; Lane 1) and H3T6phos (Lane 2) nucleosomes were probed with an anti-H3T6phos antibody and analyzed via enhanced chemiluminescence (ECL) readout. Only the H3T6phos sample produced a detectable signal. Bottom Panel: Detail from Coomassie stained gel showing unmodified (Lane 1) and H3T6phos (Lane 2) nucleosomes.

FIGURE 2 Mass spec data. Synthetic H3T6phos histone analyzed by high resolution mass spectrometry. Expected mass = 15,304.8 Da. Determined mass = 15,304.93 Da.

FIGURE 3 Protein gel data. Coomassie stained PAGE gel of proteins in H3T6phos nucleosome (1 μ g) demonstrates the purity of histones in the preparation. Sizes of molecular weight markers and positions of the core histones (H2A, H2B, H3T6phos, and H4) are indicated.

FIGURE 4 DNA gel data. H3T6phos nucleosome resolved via native PAGE and stained with ethidium bromide to visualize DNA. Both lanes are from the same gel. Lane 1: Free DNA (EpiCypher 18-0005; 100 ng). Lane 2: Intact H3T6phos nucleosomes (400 ng).