

Mononucleosomes (H3.1△N32), Human Recombinant, Biotinylated

Catalog No	16-0016	Species	Human
Lot No	22224006-01	Source	E. coli & synthetic DNA
Pack Size	50 μg	Tag	Biotinylated
Concentration	4.9 μΜ	MW	193,951.1 Da

DESCRIPTION

Recombinant mononucleosomes (H3.1 \triangle N32) consist of 147 base pairs of DNA wrapped around an octamer core of histone proteins (two each of H2A, H2B, H3.1, and H4) to form a nucleosome, the basic repeating unit of chromatin. The 147 bp 601 sequence, identified by Lowary and Widom [1], has high affinity for histone octamers and is useful for nucleosome assembly. The amino acid sequence of H3.1 begins with glycine 33 (amino acids 1-32 are deleted) and the DNA in this nucleosome contains a 5' biotin-TEG group.

TECHNICAL INFORMATION

Stable for six months at -80°C from date of receipt. For best results, aliquot and avoid freeze/thaws. Storage 0.949 mg/mL mononucleosome in 52.6 µL 10 mM Tris-HCl pH 7.5, 1 mM EDTA, 25 mM NaCl, 2 mM Formulation

DTT, 20% glycerol (27.4 µg protein, 50 µg DNA + protein)

APPLICATION NOTES

 $H3.1\Delta N32$ mononucleosome is highly purified and suitable for a variety of applications, including use as a substrate in enzyme assays, high-throughput screening and inhibitor testing, chromatin binding studies, protein-protein interaction assays, structural studies, and in effector protein binding experiments. The N-terminal deletion enables study of its role in chromatin biology.

GENE & PROTEIN INFORMATION

UniProt ID H2A - P04908 (alt. names: H2A type 1-B/E, H2A.2, H2A/a, H2A/m)

H2B - O60814 (alt. names: H2B K, HIRA-interacting protein 1)

H3.1 - P68431 (alt. names: H3, H3/a, H3/b, H3/c, H3/d)

H4 - P62805

REFERENCES

[1] Lowary & Widom J. Mol. Biol. (1998). PMID: 9514715

FIGURE 1: Western blot data. Western analysis of H3.1 Δ N32 nucleosome. Top Panel: WT H3.1 (Lane 1) and H3.1 Δ N32-containing (Lane 2) nucleosomes were probed with an anti-H3 COOH-terminal antibody and analyzed via ECL readout. Bottom Panel: Detail from Coomassie stained gel showing histones from WT H3.1 (Lane 1) and H3.1 Δ N32 nucleosomes (Lane 2). H3.1 Δ N32 and H4 co-migrate.

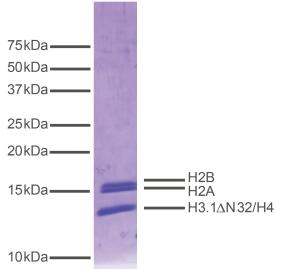


FIGURE 2: Protein gel data. Coomassie stained SDS-PAGE gel of proteins in H3.1 Δ N32 nucleosome (1 μ g) demonstrates the purity of histones in the preparation. Sizes of molecular weight markers and positions of the core histones (H2A, H2B, H3.1 Δ N32 and H4) are indicated. H3.1 Δ N32 and H4 co-migrate.

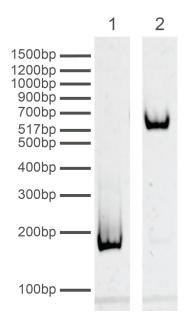


FIGURE 3: DNA gel data. H3.1 \triangle N32 nucleosome resolved via native PAGE and stained with ethidium bromide to visualize DNA. Lane 1: Free DNA (EpiCypher 18-0005; 100 ng). Lane 2: Intact H3.1 \triangle N32 nucleosomes (400 ng).